2023-2024

Quantum Information and Quantum Computing, Project 11

Teacher : vincenzo.savona@epfl.ch
Assistant : sara.alvesdossantos@epfi.ch, clemens.giuliani@epfi.ch, khurshed.fitter@epfi.ch

Variational dynamics on quantum devices

In this project, we wish to learn and practice variational quantum simulation. Indeed, quan-
tum devices are expected to be the perfect platform for quantum simulation. Simulating a quan-
tum system on a quantum device means translating the law governing its evolution in time — the
Schroedinger’s equation — into a set of instructions for our platform. In the case of digital quantum
computers, the instructions corresponds to the universal set of gates we have seen during the course.
A very good review article on digital quantum simulation can be found here.

However, current quantum devices show limitations in circuit width and depth, due to short co-
herence times of the qubits and high error rates in manipulating them. This hinders the application
of quantum devices to the simulation of quantum systems of practical utility.

To extend capabilities of current hardware beyond its current limits, many researchers focused
on the application of the variational method. This strategy is quite versatile and has been proved
useful for classical simulation of a variety of quantum systems. In class we have seen an example
of them: the Variational Quantum Eigensolver (VQE) for ground state search. Here, we will focus
on the use of the variational method for quantum dynamics on quantum device, a topic which has
been introduced in this work and extensively reviewed here.

The goal of the project is:

1. Read and understand the main article and present at the exam how the variational dynamics
works (very briefly! Strictly less than 5 minutes!).

2. Use the article and the digital quantum simulation review to understand how non-variational
quantum simulation is performed exactly and using the Trotter-Suzuki decomposition of the
time evolution operator. Use the code given below to have a classical benchmark of the time
evolved wave function for a Heisenberg chain of three spins with initial state |¢)) = [110) .
The code given measures and plots and the occupation probability of [¢)) = |110) in time
(look also at Fig. 5b of the digital quantum simulation review).

3. Use the variational time evolution algorithm to reproduce the same simulation of the Hesien-
berg chain.

4. Compare your results with a non-variational, Trotter-decomposed time evolution circuit. How
deep is the variational circuit compared to the non-variational one?

5. Think critically about the limitations of the variational methods in dynamics, what are the
main drawbacks? How many circuit do you have to evaluate compared to Trotter?

https://arxiv.org/abs/1907.03505
https://journals.aps.org/prx/pdf/10.1103/PhysRevX.7.021050
https://quantum-journal.org/papers/q-2019-10-07-191/pdf/
https://arxiv.org/abs/1907.03505

Code to simulate the system classically via Qiskit
Here below you can find a code to simulate exactly on a classical device the dynamics of the
Heisenberg chain. Please note the size of Upeiss(t) in matrix form. It’s representated by an 8 x 8
matrix. This is because there are 23 = 8 states in the N = 3 system. If the simulation were of 50
particles (N = 50), Uneis(t) would be approximately 10 x 10

Import classical libraries to simulate the model
import numpy as np

import matplotlib.pyplot as plt

import scipy.linalg as la

Import operators and states from qgiskit
from qgiskit.quantum_info import Pauli, SparsePaulilOp, Statevector

Construct the matrix representation of the Hamiltonian
H_heis3 = SparsePauliOp.from_list ([(’XXI’, 1), (°IXX’>,1),CYYr>, 1), (°IYY’,1)
,(2727z1°, 1), (°IZZ’,1)]).to_matrix()

Define a function that creates the time evolution operator at time t
def U_heis3(t):
return la.expm(-1j * H_heis3 * t)

Define array of time points
ts = np.linspace (0, np.pi, 100)

Define initial state [110>
initial_state = Statevector.from_label(’011°’).data ## Define the initial state
as |110>, remembering the inverse order of qubits in Qiskit

Compute probability of remaining in [110> state over the array of time points
initial_state with @ gives the bra of the initial state (<110])
@ is short hand for matrix multiplication
U_heis3(t) is the unitary time evolution at time t
t needs to be wrapped with float(t) to avoid a bug
the two @ return the inner product <110|U_heis3(t) 110>
np.abs(...)**2 is the modulus squared of the innner product which is the
expectation value, or probability, of remaining in [110>
probs_110 = [np.abs((initial_state @ U_heis3(float(t)) @ initial_state))**2 for
t in ts]

Plot evolution of [110>

plt.plot(ts, probs_110)

plt.xlabel (’time’)

plt.ylabel (r’probability of state $[110\rangle$’)
plt.title(r’Evolution of state $|110\rangle$ under H_{Heis31}’)
plt.grid ()

plt.show ()

